
Kinetic Ising cellular automata models in one dimension

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 2147

(http://iopscience.iop.org/0305-4470/23/11/035)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 14:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 23 (1990) 2147-2156. Printed in the U K  

Kinetic Ising cellular automata models in one dimension 

N Menyhard 
Central Research Institute for Physics, PO Box 49, H-1525 Budapest, Hungar) 

Received 9 October 1989, in final form 22 January 1990 

Abstract. For cellular automata versions of Glauber and Metropolis kinetic Ising models 
in one dimension the critical and domain growth dynamical exponents, Z,, and Zdp, are 
shown to coincide if  the dynamical scaling assumption holds. Computer simulations 
presented yield Zdg = Zcr equal to 2 and 1, respectikely, for the Glauber and Metropolis 
models with checkerboard updating. The latter model with its faster relaxation is suggested 
as an algorithm superior to the usual Monte Carlo ones. 

1. Introduction 

In equilibrium statistical mechanics the study of Ising systems has played an important 
role with many fruitful results. In non-equilibrium statistics of Ising systems a compar- 
ably useful development followed the introduction of single spin-flip kinetic Ising 
models (Glauber 1963). 

Among kinetic Ising models ( K I M S )  the one named after Glauber is the best known 
one, having the great advantage of being exactly soluble, though only in I D .  

Kinetic Ising models have widely been used in Monte Carlo ( M C )  simulations of 
spin systems in processes to reach thermal equilibrium (Binder 1979) as well as in 
non-equilibrium situations like domain growth following deep quenches (see, e.g., 
Gunton et al 1983). It is through their MC simulations that K I M S  are closely related 
to probabilistic cellular automata (CA)  since, under these circumstances, besides space 
and values of the spin variable time is also discrete (see Wolfram (1986) for a collection 
of papers). CA are also characterised by local interactions. Thus the direct construction 
of CA versions of K I M S  is straightforward (Vichniac 1984). 

There is a basic difference, however, in the way of updating spins: while it proceeds 
in a random sequential manner in MC procedures, in CA evolution it is synchronous. 
In constructing CA versions of K I M S ,  in order to ensure fulfilment of detailed balance 
with the Ising Hamiltonian, instead of fully synchronous updating an alternating 
updating of spins on (usually two) sublattices has been proposed (Vichniac 1984. 
Pomeau 1984). For details see section 2. 

MC procedures introduce a basic randomness into the dynamical models under 
simulation. A kind of uniformity can result and several interesting features of dynamics 
may be lost in this way. CA representation offers a way to get rid of this uniformity 
effect and, as a result, simple models with a wide variety of dynamical behaviours may 
arise. The aim of the present paper is to illustrate this point explicitly in the cases of 
the two most widely used single-spin-flip KIMS,  namely, the Glauber model (Glauber 
1963) and the Metropolis rule (Metropolis er al 19531, in one dimension, where the 
effect is most pronounced. 
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Computer simulations for the Glauber and Metropolis CA models with alternating 
two-sublattice updating have been carried out. Though there is no genuine phase 
transition in the I D  Ising model, the temperature T = 0 acts thermodynamically as a 
critical point where ordering sets in, T,,=O. Here the ferromagnetic case will be 
considered. We have studied ( a )  the rate at which domains of one of the degenerate 
stationary states of the system grow from a completely random state (quenching from 
temperature T = CD to T=O) and ( b )  the relaxation to equilibrium in the vicinity of 
T=O as a function of temperature. Results are presented in ( a )  for the dynamic 
structure factor at the characteristic Bragg peak (q = 0, in the ferromagnetic case 
investigated), and in ( b )  for the relaxation time of magnetisation and for the average 
kink density in both cases. These quantities have been found to exhibit power law 
behaviours (i.e. scaling) followed over about three decades in time (case ( a ) )  and in 
p E exp( -4J/ kT)  (case ( b ) )  where J is the usual Ising coupling constant. From these 
results the domain growth dynamic exponent z d g  in ( a )  and the critical dynamical 
exponent Z,, in ( b )  could be deduced. For the Glauber CA model z d g  = Z,, = 2 has 
been obtained, while for the Metropolis model Z d g  = Z,, = 1 resulted. The equality of 
z d ,  and Z,, is argued to stem from the peculiarity of the 1 D case, namely that T,, = 0, 
where the critically behaving coherence length 6 - P - ' ' ~  is the dominating length scale. 
Thus domain growth scaling reflects dynamic critical behaviour. 

The reason that the two models belong to different universality classes lies in the 
difference of the law of motion of kinks. It is diffusive in the Glauber case while of 
constant velocity U = * 1 in the CA version of the Metropolis KIM. The Metropolis CA 

is interesting also from the point of view of computational efficiency: due to its 
T (  p )  - p-"* relaxation, it is superior to Glauber MC and also to Glauber CA, for which 

Finally, it is pointed out that Metropolis CA offer a genuine cellular automaton 
representation of the relaxational growth model by Krug and Spohn (1988) at T = 0. 

The paper is organised as follows. In section 2 the models, i.e. the transition rules 
and the way of updating, are introduced. Domain growth scaling and consequences 
of critical dynamics are summarised in section 3. Section 4 is devoted to the results 
of computer simulations and section 5 contains a discussion of the results. 

d p l - p - ' .  

2. Definition of models 

Kinetic Ising models (Glauber 1969) are stochastic models in which each spin can flip 
or exchange with other spins in accordance with prescribed transition rates, which are 
so constructed that for f + m  (t=time) the system always be found in the exact 
equilibrium king state. An infinite number of kinetic Ising models can be defined 
which comply with this requirement but only a few simple ones are used in practice. 

Let us consider a I D  lattice with N sites, each site occupied by an Ising spin s, = 5 1. 
The general form of single spin-flip transition rate, W, with the restriction of up-down 
symmetry and of symmetrical dependence on the neighbours s,-,, sjtl as given by 
Kawasaki (1972) is 

(2.1) 
where {s,.} denotes the states of all the spins except s,. 

W - s , ,  {Sl,}lS1, {SI 1) = ; d l  + ~ S , - l S , + l - ; Y ( l +  6)s,(s,-,+ S,*l)I  

The associated Hamiltonian is the ferromagnetic Ising Hamiltonian: 
H = - ( J / k T )  sisj .  

l i - j l = l  
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Glauber’s original model (Glauber 1963) in the form most frequently used corre- 
sponds to the choice of the parameters CY, 6, y in (2.1) as follows: 

a = l  S = O  y = tanh K K = 2J /kT (2.3) 

while the Metropolis rule (Metropolis et a1 1953), usually given as 

W, = min(1, exp[-Ks,(s,-, + s,,,)]} 

can be obtained from (2.1) with 

y = tanh K. 2 + Y  a=--  Y 
ff =- 

l + Y  2+Y 
(2.4) 

Note that W, is a transition rate and is not normalised. The basic difference between 
the two transition rates is that in indifferent neighbourhoods ( s l - ,  + s,,, = 0) the proba- 
bility of a spin-flip is for the Glauber model (2.3), while it is unity for the Metropolis 
model. 

One-dimensional cellular automata are defined on a I D  regular lattice with spins 
s, taking discrete values at sites i. The states are renewed at discrete time steps under 
the action of local rules, usually given through conditional probabilities 
C?(s:ls,, SI-1 9 s,+1). 

The conditional probability corresponding to (2.1) can be written as 

where is the Kronecker symbol. Cellular automata rules are usually applied 
synchronously. 

In order to ensure, however, that the CA rules under consideration are in 
accord with the Boltzmann weight and detailed balance be satisfied with the prescribed 
Hamiltonian-(2.2) in our case-an updating in the checkerboard pattern has been 
introduced (Vichniac 1984, Pomeau 1984). Check updating in I D  means that, at time 
step t ,  every second spin, say on sites i = 1,3 ,5 , .  . . , N - 1 for t = odd, will be updated 
while at time step t + 1 spins on sites i = 2,4, . . . , N will renew their states. Thus a 
complete updating of the system needs two time steps. In the following we will use 
rules (2.1)-(2.5) and prescribe check updating. 

3. Domain growth and critical dynamics 

Starting from a random state and applying rule (2.5) with y = 1 (T = 0) corresponds 
to a rapid quench of the system from a disordered state at infinite temperature into 
one of its competing degenerate stationary states at zero temperature. Quenches from 
T = 00 to O< T T, in higher dimensions and in the framework of Ising-, Potts- and 
Ginzburg-Landau-type models have widely been investigated theoretically as well as 
via computer simulations (see Gunton et a1 (1983) for a review). Such a deep quench 
leads to the formation of small domains separated by domain walls. The average size 
of domains L( t )  increases in time and in the later stages of growth L( t )  exceeds all 
characteristic lengths of the system and power laws, scaling and universal behaviour 
can be expected to hold analogously to critical phenomena (Binder and Stauffer 1974). 
Dynamic scaling is usually expressed as a homogeneity relation for the structure factor 
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S (  q, t ) :  S ( q ,  t )  = L( t ) d S (  qL( t ) ) ,  and according to the scaling assumption domain 
growth is algebraic in time 

L( r )  - t‘ (3.1) 

where d denotes dimension and  S is a scaling function. 
For a two-component non-conserved order parameter it is usually taken as estab- 

lished that x = 4 (Allen-Cahn law (1979)), independent from T (except for the critical 
region). 

For the models investigated here a unique peak is expected to develop at q = 0. 
Consequently, the quantity of interest is (Sadiq and  Binder 1983) 

(3.2) 

where M (  t )  = (1/ N )  I, s, and ( ) denotes averaging over all initial states. tY( t )  is the 
dynamic coherence length of the system defining the domain growth dynamic exponent, 

S(0, t )  = N(M’( t1) -  L ( t )  - & ( r )  

Z d g ,  as 

& ( t )  - tl’Zds. (3.3) 

Another quantity, the average density of kinks: 

(3.4) 

also defines a relevant length measure (Sadiq and Binder 1983) 

f i ( t ) - l / & ( t ) - f - L .  (3.5) 
Whenever scaling is satisfied with a single characteristic length, y = x is to be expected. 

The one-dimensional case is specific as compared to higher-dimensional ones 
because the whole temperature region of the ordered phase shrinks to the single point 
T = 0 which is the critical point too. This has the consequence that, though L ( t )  > 5 
is not fulfilled for any time, characteristic domain growth proceeds and  scaling is 
expected to be governed by critical dynamics (5 is the correlation length in the I D  

Ising system). 
The domain walls separating the ferromagnetic domains: kinks (up-down boun- 

daries) and  antikinks (down-up boundaries) move diffusively and  annihilate pairwise 
upon meeting: kink+antikink-* 0 in case of Glauber dynamics (figure 1( a ) ) .  Diffusion- 
limited annihilation is a well studied problem of mathematics (Griffeath 1979). For 
the CA version of the Glauber model Domany and  Kinzel (1984) have derived the 
theoretical expression for f i (  t ) ,  namely 

fi( t )  = (8TDt)-’:’ t + m  (3.6) 

Figure 1. Evolution of the ( a )  Glauber CA and ( b )  Metropolis C A  from random initial 
configuration through the first 50 time steps. Horizontal axis: space coordinate, vertical 
axis: time, increasing downwards. Black regions: 5, = + 1; white regions: 5, = - 1.  
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where Dis  the diffusion constant. D = f results in the standard annihilative RW problem, 
i.e. when particles move at each time step to the right or to the left with probability 
4, without any halting time. 

For one-dimensional Ising statics the singularities of thermodynamical quantities 
when T + O  are essential ones. Nevertheless some of the critical exponents can be 
defined if we use p = exp( - 2 K ) ,  K = 251 kT, instead of T. From exact solution of the 
I D  Ising model (see, e.g., Stanley, 1971) the coherence length, 6, and the static 
susceptibility, x ,  are known to behave like 

t - P - ”  kTX - p-.’ y = v = f .  (3.7) 

Moreover, from the result for the equilibrium correlation (S,S,+~)  = tanh(K/2)  = 
1 - 2 ~ l ’ ~ ,  the equilibrium density of kinks, A(p), is obtained, using (3.4), as 

A (  p )  = p”” a ,  =;. (3.8) 

Concerning dynamic critical scaling (Ferrell et a1 1967, Halperin and Hohenberg 
1967) its predictions for the dynamic structure factor at q = 0 and for the kink density 
can be given as follows. 

Supposing that there is a single characteristic time in the system, ~ - p - ” ~ c r ,  in the 
limit of vanishing p ,  S(0, p ,  t )  can be written as 

S(0, P, t )  = tligs(E) & = tp% (3.9) 

where Z,, is the critical dynamical exponent and the scaling function gs( E )  = constant 
for E + 0. For E >> 1, however, gs (  E )  is supposed to behave like gs( E )  = E - ‘  x constant. 
In this limit S(0, p ,  t )  -p-’ has to hold; thus 

x = 71 vz,, (3.10) 

arises. 
Similar relations can also be written for A(p, t ) :  

A(P, t )  = t-’gn(E) E + O  (3.11) 

with g,(O) =constant. For E >> 1 g,(E) = E ’  x constant yields the expected A(p, t )  -put] 
with the second scaling law? 

Y = a,/ vzc r .  

Using (3.7) and (3.8) we get 

(3.12) 

x = y = 1/Zcr (3.13) 

It is an important feature of the I D  case that (3.9) and (3.11) refer to the same quantities 
as (3.1) and (3.5), respectively. Z,, is to be determined via the linear relaxation time 

‘(P)--P-~Zcr=p-4r/2.  (3.14) 
In the case of the Glauber model the exact solution yields (Glauber 1963) 

1 
z=- 

1 
‘(’)=l-tanhK 2 p ’  (3.15) 

+ It is to be noted that in higher dimensions the second scaling law contains the critical exponent a of the 
specific heat as 1 - a  (Sadiq and Binder 1983) instead of a,. The reason is that, in I D ,  a is negative and 
the scaling behaviour is carried by the next-to-leading-order term. 
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In the following we will present results of numerical simulations for S(0, t )  = 
S(O,O, t )  and A ( t )  A(0, t )  by starting from a completely random initial state and 
applying (2.1) with y = 1 ( p  = 0) while ~ ( p )  and ri( p )  = ti( p ,  m)  will be measured under 
the condition of a pure initial state (say, with M( t = 0) = 1; M is the magnetisation 
density) using (2.1) for various values of p ,  p # 0, small. 

4. Results of computer simulations 

4.1. The Metropolis model 

The Metropolis rule (2.1) with (2.4) has no inherent randomness at T=O. When 
applied with random sequential updating as in a Monte Carlo simulation, it leads to 
the same result as the Glauber model. 

The same rule with check updating produces the spacetime picture as shown in 
figure l ( b )  if we start from a random initial state with zero average magnetisation. 

Domains of pure up-spin and down-spin sites are separated by kinks (antikinks) 
moving with maximal velocity U = + 1 (-1) to the right (left). Upon meeting, a kink 
and an antikink annihilate (particles cannot cross each others’ trajectories). As t + a, 
provided the initial state has been prepared so that equal number of kinks and antikinks 
are present, one of the degenerate pure states will result. Starting from a random 
initial distribution of 1 and -1 at t = 1, in the spirit of check-updating as described in 
section 2,  the rule, on the particle level (i.e. in terms of kinks and antikinks, instead 
of spins) can be formulated as follows: a domain boundary will move to the right 
provided it is situated at t = 1 between even-odd indexed sites ( i  = even, i + 1 = odd) 
while in the case of a domain boundary between odd-even indexed sites ( i  = odd, 
i + 1 = even) an antikink is emitted. By interchanging odd and even, an equivalent 
situation arises, of course. From then on the whole process is deterministic. The only 
random element is contained in the averaging over all possible initial states. 

In simulating a quench from T = m  to T=O we have started from disordered 
configurations of zero average magnetisation and averaging over many (100-200 in 
practice) independent initial states. Here and in all further CA simulations, periodic 
boundary conditions have been applied and the timescale was such that the two steps 
of check updating counted as two units of time. 

For S(0, t )  and A(?) two characteristic power laws indicating scaling have been 
observed (figure 2): 

S(0, t )  - a,tx 

ii( r )  = a,?-” 

a, = 0.96 * 0.05 

a, = 0.285 * 0.005 
Our result gives, according to (3.2), S(0 ,  t )  - & ( f )  - t ,  & ( t )  being the dynamical coher- 
ence length of the problem, determined by the linear law of motion of kinks and 
antikinks: x = ut, zr = * 1. From (3.3) Zdg= 1 follows. 

As to the result for A(?), it is in good agreement with (3.6), the expression for 
diffusion-limited annihilation, with D = $. The rule being wholly deterministic, the 
source of randomness lies solely in the initial state. In an equivalent problem of the 
ideal gas of point particles A performing free motion with velocities U = *1 on a line 
and with annihilation kinetics A,=, +A,=- ,  + 0, Elskens and Frisch (1985) have been 
the first to derive A ( t ) ,  starting from an initial state in which particle positions have 
a Poisson distribution. The length measure &( t )  of (3.5) is thus not an intrinsic one; 
it characterises the initial state. 

x = 0.98 * 0.05 

y = 0.49 f 0.01. 
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0 

Y i  

10 , , , , , , , , 
10 102 + 103 

Figure 2. Results of computer simulation for S ( 0 ,  f )  and ti( f )  in the case of the Metropolis 
C A  model. N = 2 x lo4 and averaging over 150 independent initial configurations has been 
carried out. 

At T # 0 ( p  # 0) kink-antikink pairs can also be created at positions belonging to 
domain interiors. According to the rule on the particle level, as described before, 
kink-antikink pairs are allowed to arise only so that the seeds of new-born phases lie 
on sites satisfying i + t = even. The spacetime picture of the process at p = 0.01 is shown 
in figure 3. 

As time goes on creation and annhihilation of kink-antikink pairs reaches equili- 
brium, and for t + oc some equilibrium kink density, n( p ) ,  arises for which (3.8) holds 
as an exact result. In measuring the critical slowing down, the relaxation time r ( p )  
was defined as the average time during which an initial pure state with magnetisation 
density M ( 0 )  = 1 has decayed to a state with M (  T) = 0.5. 

A lattice of N = lo4 sites was used and averages over 100 independent runs have 
been performed. The results are (figure 4) 

T( p )  = a,p-"r a, = 1.05 * 0.1 cy, = 0.51 * 0.02 

n ( p )  = a,p"tv a, = 0.95 i 0.1 a ,  = 0.49 f 0.02. 

From the result obtained for T( p ) ,  namely that cy, = within numerical error, using 
(3.14), Z,,= 1 follows. This finding, together with establishing Zde= Z,, for the 
Metropolis CA model, constitutes the main result of this paper. The good agreement 
of the simulations for A ( p )  with (3.8) is regarded as a check. 

Figure 3. Spacetime evolution of Metropolis CA with p = 
starting from an ordered state with ) M ( O ) \  = 1. 

for the first 50 time steps, 
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1 +-T , , . " ' ,  I 1 ,  "r -- 
10-L 1 0 - ~  10-2 lo-' 

P 

Figure 4. Results of computer measurements of A ( p )  and ~ ( p )  for the Metropolis C A  at 
p # 0. 

4.2. The Glauber model 

Though the Glauber model is exactly solvable in I D  and Z ( t )  has also been derived 
for its CA version, as mentioned in the previous subsection, the explicit result for S(0, t )  
appears not to be available. Thus, for the sake of completeness, we provide here results 
of computer simulations also for the Glauber model. 

The results for S(0, t )  and A ( ? )  are as follows (figure 5): 

ti( t )  = a,.tf' 

S(0, t )  = a,tx 

ay = 0.282 f 0.002 

a, = 2.2 * 0.2 

y = 0.50 * 0.01 

x = 0.49 * 0.03. 

The t"2behaviour of S(0, t )  is in agreement with the Allen-Cahn (1979) law. Moreover, 
according to (3.2) and (3.3) it gives the domain growth dynamic exponent as Zdo = 2, 
within numerical error. The result for ii( t )  agrees with (3.6) with D = 4 again. 

---- 1 L--- 10 , , , , , , , 10 , * 
103 1 

t 
Figure 5. Results o f  computer simulation for S ( 0 ,  I )  and A ( t )  in the case of Glauber CA. 

The lattice size is N = IO4, and averaging over 200 independent random initial states with 
zero average magnetisation has been performed. 
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In the simulation of critical slowing down for the Glauber model the relaxation 
time ~ ( p )  was defined as for the Metropolis CA model. We have obtained: 

7( p )  = a,p-"r a, = 0.5 * 0.01 cy, = 1 .o f 0.02 

ii( p )  = anput' a,, = 0.94 f 0.05 a, = 0.505 i- 0.01. 

The agreement with the exact results (3.15) and (3.8) is satisfactory. We conclude also 
in the Glauber case that Zd, = Zcr. 

5. Summary and discussion 

In this paper cellular automata versions of two most frequently used single-spin-flip 
kinetic Ising models have been investigated in one dimension by performing computer 
measurements under the conditions of ( a )  rapid quench to T=O and ( 6 )  critical 
slowing down in the vicinity of T = 0 as a function of time and temperature, respectively. 

For the Glauber CA model we have found the same behaviour-as could be 
expected-as from MC simulations. The circumstance that checkerboard updating 
does not result in any change can be traced back to the probabilistic nature of 
the rule, especially to the inherent randomness present through the component 
Q( 1 1-1, 1 ,  -1) =: of the transition probability determining kink kinetics. 

The Metropolis model, however, with check updating belongs to a different univer- 
sality class: the dynamical exponents measured under conditions ( a )  and ( b )  above 
and Z,, and Z,, both equal unity. This value reflects the linear law of motion of the 
kinks U = f t  persisting for T # 0, too. The reason lies in the deterministic and Class 
1 nature? of the Metropolis CA; that part of the transition rule (Q( l1-1 ,  1,  - l ) =  1 
determining kink motion is deterministic at all temperatures, and not influenced by 
the random nature of the kink-antikink creation ( Q ( -  11 1 ,1 ,  1 )  = p).  Check updating, 
naturally, does not introduce any randomness. (Changing to random sequential up- 
dating, the universality class changes, z d g  = Z,, = 2 are obtained.) Dynamic critical 
scaling, which leads to Zdg = Z,,, is partly violated, namely in the n( t )  - t-"* behaviour 
of the kink density under condition ( a ) ,  as n ( t )  reflects the scaling properties of the 
ensemble of initial (random) states. 

The Metropolis CA model is equivalent-concerning kink dynamics-under condi- 
tion ( a )  to a deterministic growth model proposed by Krug and Spohn (1988). The 
surface steps in their model correspond to the kinks of the Metropolis CA. Using 
scaling arguments and also calculating the two-surface-step correlation function 
exactly, these authors have found 5 = 2t for the intrinsic coherence length and thus 
z d g  = 1 for the non-equilibrium dynamic exponent, in accord with our result. 

Concerning CA 184 (in Wolfram's (1984) coding) claimed to be equivalent, on the 
particle level, to their growth model by Krug and Spohn (1988), the following problems 
arise. In this CA spin has values 1 , O  and updating is synchronous, the pure states are 
period-two antiferromagnetic ones; kinks are two neighbouring 0 while antikinks are 
two neighbouring 1. Besides these, however, point defects (odd numbers of adjacent 
1 or 0) and further particles (even numbers of adjacent 0) and antiparticles (even 
numbers of adjacent 1 )  with complicated reactions (e.g. 0000 -t 1 1  + 000) are also 

t Class 1 means that the evolution of the C A  from a random initial state leads to a fixed point for t - c c  
(Wolfram 1984). In the deterministic but chaotic (Class 3 )  automaton number 18 (in Wolfram's (1984) 
coding), Zdn = 2 has resulted from computer simulation. 
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possible, though with lesser probability. A further drawback of using this CA as a 
simple growth model is that its extension to finite ‘temperatures’ ( p  Z 0) by the natural 
choice Q(11111) = 1, Q(11110) = 0, Q(l(O11) = 1 - p ,  Q(lI101) = 1, Q(llOl0) = 1, 
Q( 11 100) = p ,  Q( 1 \OOl) = 0, Q( 1 \OOO) = 0 gives rise to kink + antikink pair creation as 
a second-order effect; to first order in p point defects are created. 

The Metropolis CA, however, under quench conditions, is a genuine CA equivalent 
of the above-mentioned growth model. 

Finally, through the result obtained in this paper, namely that for the Metropolis 
CA, T (  p )  - P - ” ~ ,  while for the Glauber model T (  p )  - p - ’ ,  the Metropolis CA offers a 
more efficient way of computer simulation and a quicker relaxation algorithm than 
usually applied. 

It would be worth extending the investigations to two dimensions. In 2 ~ ,  however, 
using CA versions of K I M  S ( q ,  t )  has been studied by Vifials and Gunton (1986) with 
a result indicating the unusual behaviour of the Metropolis rule in 2~ also (they 
reported a quicker than power-law dependence for S(0, t ) )  but, to our knowledge, no 
measurements concerning critical properties of this cellular automaton are available 
in ZD. 
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